EU network of mesocosms facilities for research on marine and freshwater ecosystems open for global collaboration.

KOSMOS (Kiel Off-Shore Mesocosms for Ocean Simulations)

AQUACOSM-plus

Title: KOSMOS-Gran Canaria 2021 – First in situ mesocosm experiment to study the potential risks and co-benefits of ocean alkalinization in a pelagic ecosystem

Project Lead: Prof. Ulf Riebesell

Timing: *early September to mid October 2021 (five weeks experimental duration)

* In case of COVID-19 related restrictions, the experiment may have to be postponed to November to December 2021.

Location: Taliarte, Gran Canaria, Spain

Mesocosm facility: KOSMOS in-shore mesocosms (9 units)

Approach: As part of the OceanNETs project (see project description below) an in situ in-shore mesocosm experiment will be conducted in the subtropical oligotrophic waters off Gran Canaria, Spain (representative for low to mid-latitude open ocean conditions), with a special focus on (i) biological responses to ocean alkalinization, and (ii) possible biogeochemical feedbacks dampening or amplifying the CDR capacity of ocean alkalinization. The experiment will simulate air-equilibrated alkalinization via ocean liming over a gradient of alkalinity enhancement through the addition of NaHCO3 and Na2CO3.

Objectives: To examine ecological and biogeochemical responses of an oligotrophic subtropical pelagic system to ocean alkalinization.

Research questions: What are the potential risks and co-benefits of ocean alkalinity enhancement for pelagic ecosystem structure and functioning? Specifically we will test for possible negative impacts of ocean alkalinization with regards to biodiversity loss, decline in primary production, failure of trophic transfer, alkalinity “leakage“ through chemical carbonate precipitation and enhanced biogenic calcification. Possible co-benefits of ocean alkalinization investigated in this study include mitigation of ocean acidification effects, improvements of the algal index (diatoms versus dinoflagellates), enhancing the biological pump.

We invite Transnational Access (TA) users to apply: With the aim to obtain a comprehensive data set on ecological processes and biogeochemical fluxes in this study on ocean alkalinization, any interested external user with complementary expertise is welcome to participate and apply for TA. A total of up to 211 person days will be allocated to external users through Transnational Access provided under AQUACOSM-plus for 2021. It is anticipated that participation of up to 6 persons for ca. 35 days will be supported.

Practical information: All participants will be accommodated in near-by private apartments. Well-equipped lab space will be provided at Plataforma Oceánica de Canarias (PLOCAN) and in the Scientific and Technological Park of the University of Las Palmas (ULPGC) in Taliarte. The in situ inshore mesocosm facility will be moored in Taliarte harbor. The mesocosm facility, all labs and private apartments are within walking distance. In addition to conducting their own research, external users should be prepared to participate in various service activities, including sampling at the mesocosms as well as regular cleaning and maintenance of the mesocosms. TA users will be supported by the KOSMOS team in all aspects concerning travel, accommodation and logistics on site, transport of equipment and customs clearance. TA users are strongly recommended to stay for the full duration of the experiment.

Project description: OceanNETs aims to determine to what extent, and under what conditions, the large-scale deployment of ocean-based negative emission technologies could contribute to realistic and effective pathways for Europe and the world to achieve climate neutrality and the goals established in the Paris Agreement, as well as, to identify and prioritize options with the most potential in regard to CO2 mitigation, environmental impact, risks, co-benefits, technical feasibility, cost effectiveness, and political and societal acceptance.

Outlook: A complementary mesocosm experiment within the scope of OceanNETs will be offered for Transnational Access support from May to July 2022. This experiment with our KOSMOS off-shore mesocosm facility will be carried out in the coastal waters off Norway (representative for temperate zone neritic systems), comparing alkalinization through the addition of lime and olivine in separate treatments and investigating the ecological (microbes to larval fish) and biogeochemical responses.

Project description: The OceanNETs project (Ocean-based Negative Emission Technologies, https://www.oceannets.eu/) is hosted at GEOMAR Helmholtz Centre for Ocean Research Kiel and funded from the European Union’s Horizon 2020 research and innovation program. Project partners are GEOMAR Helmholtz Center for Ocean Research Kiel, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Heriot-Watt University, Finnish Meteorological Institute (FMI), Kiel Institute for the World Economy (ifw), Potsdam Institute for Advanced Sustainability Studies (IASS), Norwegian Research Centre (NORCE), Norwegian University of Science and Technology (NTNU), University of Oxford, Universidad de Las Palmas de Gran Canaria (ULPGC), Hamburg University, Leipzig University, and University of Oslo.

Deadline for TA application at KOSMOS is 30 April 2021, 13:00 CET.

 

AQUACOSM

The mesocosm facility does not open for TA in 2021 in the frame of AQUACOSM.

Call for TA-2020 is already closed.

KOSMOS-Peru 2020: Effect of changing upwelling intensity on trophic transfer efficiency and export efficiency in the Peru upwelling system. Project Lead: Ulf Riebesell. Timing: February to April 2020 during a KOSMOS experiment in Peru.

Project: Coastal Upwelling in a Changing Ocean (CUSCO)

CUSCO is a coordinated project funded by the German Ministry of Education and Research (BMBF). Project partners include GEOMAR Helmholtz Centre for Ocean Research Kiel (GEOMAR), Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Leibniz Institute for Baltic Sea Research Warnemünde (IOW), University of Bremen, University of Hamburg and Kiel University. The project, which runs from October 2018 to December 2021, is coordinated at GEOMAR (https://www.ebus-climate-change.de/cusco).

KOSMOS mesocosm campaign: As part of the CUSCO project (see project description below) a large-scale mesocosm experiment will be conducted in the coastal waters off Callao, Peru, from February to April 2020 using the KOSMOS experimental platform. The experiment will last for 60 days and will investigate the effects of upwelling intensity, simulated by different mixing ratios of surface and deep water on community productivity, food web structure, export and trophic transfer efficiency from primary producers up to small pelagic fish.

Specifically, the KOSMOS experiment will address the following overarching questions:

  • How does upwelling intensity in the HUS scale with plankton community production and what controls the anomalous (out-of-phase with coastal upwelling intensity) seasonal variability?
  • What explains the exceptionally high trophic transfer efficiency (TTE) in the HUS and how is the TTE of energy and biomass from primary producers to small pelagic fish affected by changes in upwelling intensity?
  • What are the effects of changes in upwelling intensity on particle dynamics and how does this influence export flux?
  • Which pathways for transfer of matter and energy are important in the Peruvian coastal zone?

We encourage a wide range of Transnational Access (TA) users to apply: You may come from public authorities, technological partners, and research or teaching institutions. As we plan to observe whole-ecosystem responses, everyone with any complementary expertise is welcome to participate in the KOSMOS are welcome to apply for TA. A total of up to 832 person days will be allocated to external users through Transnational Access provided under AQUACOSM for 2020. It is anticipated that AQUACOSM will support stays of at least 12-14 persons for ca. 60 days, or potentially other combinations.

Practical information: All participants will be accommodated in near-by hostels and private apartments. Lab space will be provided in a rented storehouse. Access to the mesocosms, which will be deployed about 4.5 nautical miles off-shore, will be by small boats operated by the KOSMOS team. In addition to conducting their own research, external users should be prepared to participate in various service activities, including daily sampling at the mesocosms and regular cleaning of the mesocosms. TA users will be supported by the KOSMOS team in all aspects concerning travel, accommodation and logistics on site, transport of equipment and customs clearance. TA users are recommended to stay for the full duration of the experiment.

Project description: Eastern Boundary Upwelling Systems (EBUS), which support the ocean’s most productive ecosystems and are of major importance to global food security, will be impacted by climate change in multiple ways. While upwelling-favourable winds are projected to increase in poleward regions of the EBUS, weakening wind and upwelling strengths are expected in equatorward regions. Stronger upwelling-favourable winds will be counteracted by increased thermal stratification due to surface ocean warming, the net result of which is still uncertain and likely to differ regionally and seasonally. Among the four EBUS the Humboldt Upwelling System (HUS) stands out in several ways. It is not only the largest and, in terms of fish harvest, most productive of the four EBUS, implying exceptionally high trophic transfer efficiency. It also displays a counterintuitive relationship between upwelling intensity and phytoplankton productivity. In view of its dominant role in global fisheries, there is an urgent need to explore the mechanistic links between upwelling intensity and ecosystem productivity and their sensitivity to climate change in the HUS.

No experiment with TA support has been conducted in 2019.

Ocean Artificial Upwelling – Study the feasibility, effectiveness associated risks and side effects of artificial upwelling. Project lead: Ulf Riebesell. 01/09-30/11 2018

We invite external users who are approved for AQUACOSM TA access to join our Ocean Artificial Upwelling KOSMOS experiment off Gran Canaria planned to run from September to November 2018. We welcome experts with any complementary expertise (see below).

A total of at least 390 person days will be allocated to external users in 2018 of AQUACOSM Transnational Access provision. KOSMOS experiments planned in the next 5 years and already funded include studies on the effects of ocean deoxygenation in oxygen minimum zones of eastern boundary upwelling systems, effects of ocean acidification on oligotrophic pelagic systems, and the potential of artificial upwelling in raising productivity and fishery harvest in unproductive ‘ocean deserts.’ Experiments in 2018 are expected to be conducted in oligotrophic, subtropical waters of Gran Canaria or Cape Verde. Access will be provided to 6-9 users for 50-65 days.

Abstract: The productivity of the ocean is limited by the transport of nutrient-rich deep waters to the sun-lit surface layer. In large parts of the global ocean this transport is blocked by a temperature-induced density gradient, with warm light waters residing on top of heavier cold waters. These regions, which are referred to by scientists as ocean deserts, are presently expanding due to surface-ocean warming. Enhancing the upward transport of nutrient-rich deep waters through artificial upwelling can break this blockade and make these waters more productive. Forced upwelling of deep-ocean water has been proposed as a means to serve three distinctly different purposes: (1) to fuel marine primary production for ecosystem-based fish farming; (2) to enhance the ocean’s biological carbon pump to sequester CO2 in the deep ocean; (3) to utilize the surface to deep-ocean temperature gradient to generate renewable energy via Ocean Thermal Energy Conversion (OTEC). Whereas theoretical and technical aspects of applying artificial upwelling for these purposes have been studied to some extent, the ecological responses and biogeochemical consequences are poorly understood. Ocean artUp therefore aims to study the feasibility, effectiveness, associated risks and potential side effects of artificial upwelling in increasing ocean productivity, raising fish production, and enhancing oceanic CO2 sequestration. 

Objectives: Possible applications of artificial upwelling for the purposes outlined above have their greatest potential in tropical and subtropical regions. As most of these regions are permanently stratified with year-round low productivity, their pelagic ecosystems are adapted to low nutrient supply. Applying artificial upwelling in these environments is likely to induce dramatic changes in the structure and functioning of the local ecosystems, with potentially undesirable side effects on marine life and related ecosystem services. Ocean artUp will investigate the biological and biogeochemical responses to deep-water supply into oligotrophic environments in order to establish a knowledge base for a comprehensive assessment of the feasibility, effectiveness, associated risks and potential side effects of this approach. For this purpose, Ocean artUp will address a variety of key questions at various levels of biological organization.

At the level of primary producers:

  • What phytoplankton composition develops in response to deep-water upwelling?
  • How is this affected by the nutrient stoichiometry (silicon to nitrogen to phosphorus), the rate and mode (pulsed vs. continuous) of nutrient supply, the mixing ratio between deep and surface water and the season?
  • How do these variables affect the efficiency of nutrient utilization?
  • What is the food quality of primary producers for higher trophic levels?

At higher trophic levels

  • What type of food web establishes with how many trophic steps to harvestable fish?
  • What is the transfer efficiency between primary producers/primary consumers and primary/secondary consumers?
  • What is the food quality of secondary producers for higher trophic levels?
  • Under what conditions do low numbers of tropic steps combine with high transfer efficiencies towards high yield of harvestable fish?

Biogeochemical turn-over

  • How does the inorganic carbon to nutrient ratio in the source water affect the in/outgassing of excess CO2?
  • How does the Si:N:P ratio in the source water affect the stoichiometry, sinking, and remineralisation rate of deep water-derived organic matter?
  • How does deep water supply rate, mode of supply and season affect the above processes?
  • What is the export and carbon sequestration potential of artificial upwelling with source waters of different chemical composition?

Associated risks and side effects

  • What is the risk of favouring growth of harmful algae?
  • What is the effect of artificial upwelling on the production of climate relevant gases?
  • Does artificial upwelling pose a risk to ecosystem health in the surrounding environment?
Legal name of organisation (short name)
GEOMAR-Helmholtz Center for Ocean Research Kiel
Country
Germany
Continent
Europe
Organisation address

GEOMAR-Helmholtz Center for Ocean Research

West shore campus
Düsternbrooker Weg 20
D-24105 Kiel

East shore campus
Wischhofstr. 1-3
D-24148 Kiel

Infrastructure (short name)
KOSMOS (Kiel Off-Shore Mesocosms for Ocean Simulations)
Infrastructure address

Seagoing mobile platform operated in moored or free-floating mode by GEOMAR Kiel, Germany

Coordinates / (routes, areas if non-static)
Facility location(s)
Description of the Infrastructure

Description of the infrastructure: The Kiel Off-Shore Mesocosms for Ocean Simulations (KOSMOS) are a seagoing mobile platform for mesocosm experiments. They can be deployed from any mid-sized research vessel. KOSMOS comprises 9 free-floating units, each consisting of a floatation frame and a flexible bag 2 m in diameter. After deployment in the sea, the bag unfolds by weights pulling down its lower end to 20 m depth, thereby enclosing an undisturbed water column of 55 m3. The bag is then closed at the bottom by a full-diameter sediment trap. Regular cleaning of the mesocosm walls prevents wall growth and thus enables long-term experiments that capture plankton seasonal succession. The enclosed water encompasses the entire plankton community from bacteria and viruses up to the level of fish larvae and small pelagic fish. Sampling of sedimented matter in combination with measurements of dissolved and suspended matter and air-sea gas exchange can be used for budget calculations of major elements (C, N, P, Si). Potential experimental perturbations include the addition of inorganic nutrients or organic compounds, carbonate chemistry manipulation (i.e. simulating ocean acidification or alkalisation), manipulation of mixed-layer depth, simulation of deep-water upwelling, species exclusion and addition of invasive species.

Sampling devices include depth-integrated and discrete water samplers, nets, gas tight samplers, and sediment samplers. Various sensors continuously record physical and chemical characteristics of the enclosed water along depth profiles. Underwater optical instruments allow for non-invasive in situ quantification of plankton community composition. The KOSMOS facility was successfully employed in long-term experiments in different climate zones, ranging from the high Arctic, temperate waters in the Baltic and North Sea, upwelling ecosystems off Peru, to oligotrophic waters off Gran Canaria and Hawai’i. These studies, which focussed on the effects of ocean acidification, deoxygenation and simulated upwelling on plankton dynamics and biogeochemical cycling, involved researchers from a wide range of scientific fields, including marine and atmospheric chemistry, molecular and evolutionary biology, marine ecology and biological oceanography, aquaculture, fish biology, and biogeochemistry. Results of the KOSMOS experiments have been used in various ecosystem and biogeochemical modelling activities.

KOSMOS mesocosms off the coast of Ny Ålesund, Svalbard. Photo: S. Klavsen
Primary contact information (PI)

Professor Ulf Riebesell (KOSMOS)

Please login or register to view contact information.
Years of Mesocosm Experiments
Description of Facility

off-shore/outdoor/indoor – pelagic/benthic – marine/brackish

Kiel-KOSMOS
outdoor mobile – pelagic – marine/brackish
9 floatting structures of 50 m3 (emerging part : 2.5 m high, 2.8 m Ø. submerged part : 17 m high, 2 m Ø)

Controlled Parameters

KOSMOS: CO2, nutrients

Research Topics

KOSMOS: phytoplankton, zooplankton, chemistry, biogeochemistry, ecology

Primary interests
Specialist areas
Source of Information
Photos of experiments/installations
KOSMOS mesocosms deployed in Raunefjord off Bergen, Norway in 2011
 

KOSMOS deployment with the Spanish research vessel „Hesprides“ off Gran Canaria in 2014
Sampling of the KOSMOS mesocosms during an experiment on the effects of ocean acidification off Gran Canaria in 2014
Infrastructure (short name)
KOSMOS (Kiel Off-Shore Mesocosms for Ocean Simulations)
Modality of access

Modality of access under AQUACOSM: A total of at least 1170 person days will be allocated to external users in years 2 and 3 of AQUACOSM Transnational Access provision. KOSMOS experiments planned in the next 5 years and already funded include studies on the effects of ocean deoxygenation in oxygen minimum zones of eastern boundary upwelling systems, effects of ocean acidification on oligotrophic pelagic systems, and the potential of artificial upwelling in raising productivity and fishery harvest in unproductive ‘ocean deserts.’ Experiments in 2018 and 2019 are expected to be conducted in oligotrophic, subtropical waters of Gran Canaria or Cape Verde. Access will be provided to 9 persons for 65 days each year.

Modality of access under AQUACOSM-plus: A total of at least 600 person days will be allocated to external users through TA provided under AQUACOSM-plus. It is anticipated that AQUACOSM-plus will support stays of at least 4-5 persons for 67 days per year in one season within M10-33. Research topics include testing for the suitability of ocean alkalisation for the purpose of carbon dioxide removal. Ocean alkalisation is one of the more promising emerging negative emission technologies. We will conduct a series of experiments to generate a robust database on the ecological and biogeochemical impacts of ocean alkalisation approaches on natural pelagic ecosystems. A KOSMOS in situ mesocosm experiment will be carried out in the coastal waters off Norway (representative for temperate zone neritic systems), and a second KOSMOS experiment will be done in the subtropical oligotrophic waters off Gran Canaria representative for low to mid latitude open ocean conditions.

Unit of access
What service and support facilities are available

Services currently offered by the infrastructure: Users have the unique opportunity to participate in multidisciplinary mesocosm experiments carried out in the open sea under close-to-natural conditions. They have daily access to all mesocosms to carry out their specific measurements during coordinated mesocosm experiments and unrestricted access to the large data set generated by all participants of the experiment. Further, users contribute to obtaining an integrated view of the responses of a complex biological system, the marine pelagic ecosystem, and are part of high-profile, highly visible research projects, and interact with leading scientists from a wide range of disciplines.

Support offered under AQUACOSM:

  •  Full operation of the KOSMOS facility during experiments

  •  Logistical and technical coordination of

the research campaign (including transport of equipment)

  •  Access to the mesocosms (including boat transfer and sampling support; Fig. 6.6.3)

  •  Access to lab facilities

  •  Coordinated data exchange and data archiving as well as data workshops

Support offered under AQUACOSM-plus: User support includes (a) full operation of the KOSMOS facility during experiments, (b) logistical and technical coordination of the research campaign (including transport of equipment, on site ordering of consumables, research permissions by local authorities, customs clearance), (c) lab space in land-based facilities at the respective study location, (d) access to KOSMOS sampling gear and incubation equipment, (e) access to KOSMOS boats, diving equipment (provided that users are certified boat drivers and research divers) and safety equipment, (e) daily access to the mesocosms (including boat transfer and sampling support) and (f) coordinated data exchange, archiving and data workshops.

Accommodation
Special rules